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A non-Rayleigh mechanism of instability in horizontally homogeneous hydrodynamic 
systems consisting of two immiscible fluids and heated uniformly from above, i.e. 
‘anticonvection’, was first investigated theoretically by Welander (1964) and more 
recently (and independently) by Gershuni & Zhukhovitsky (1980). This paper discusses 
the possibility of ‘ anticonvection ’ occurring in a water-air system, taking into account 
evaporation, stratification with respect to moisture, thermocapillary effects and the 
presence of a surface heat source at the water-air interface. For this purpose, a linear 
problem of stability is solved, in which the Rayleigh number analogues in each of the 
fluids are its eigenvalues in one case and the increments of disturbances in the other. 
It has been shown that taking into account evaporation and stratification with respect 
to moisture in the air reveals a new feedback in the system resulting in the 
disappearance of one of the previously known areas of anticonvection and the 
formation of new areas of instability. The mechanism of the oscillatory regime of the 
loss of stability in the system under study was found and considered in detail. 
Increments and wavelengths of the growing modes are calculated, and the possibility 
of experimental investigation of moist anticonvection in laboratory and field conditions 
is discussed. 

1. Introduction 
The term ‘anticonvection’ was coined by Welander (1964) to describe a new non- 

Rayleigh mechanism of convective instability. From a linear analysis of instability he 
obtained a theoretical result that might appear at first sight to be paradoxical: the state 
of mechanical equilibrium of a horizontally homogeneous system consisting of two 
immiscible fluids heated from above (stably stratified) may be unstable, followed by the 
development of convection in both fluids near the interface. 

More recently a theoretical work by Gershuni & Zhukhovitsky (1980) was 
published, in which the authors considered independently a similar problem on the 
stability of equilibrium in a system consisting of two layers of immiscible fluids of finite 
depth heated from above. This work supports the results of Welander on the possibility 
of instability of this type. Both works mentioned above analyse a physical mechanism 
of anticonvection, which differs essentially from the Rayleigh one in its nature. It can 
be briefly explained as follows. 

Let us assume, for example, that as a result of a random disturbance, an element of 
the upper (lighter) fluid has shifted downwards in the direction of the interface. In its 
new position, this element is at a higher temperature than its surroundings, since it has 
come from a higher and warmer region, closer to the source of heat input into the 
system from above. If the upper fluid has relatively small temperature conductivity and 
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FIGURE 1. A schematic of vertical profiles of the background temperature ( T ) ,  disturbances of 
temperature and vertical velocity (0 and W ) ,  and streamlines (solid curves) and isotherms (dashed 
curves) in convective cells for anticonvection of (a) the divergent and (b)  convergent types. 

thermal expansion, the element will cool down rather slowly, having in the process a 
relatively small buoyancy. However, owing to heat exchange through the interface, the 
heat lost by the element and conducted through the interface results in some fluid 
below having a higher temperature than other fluid at the same level (figure la).  If 
thermal expansion in the lower fluid is rather large, the heated element in it will be 
distinctly lighter than its surroundings. When floating up to the surface, it will spread 
beneath the interface. Owing to the continuity of shearing stress, spreading will be 
induced over the interface in the upper fluid as well. From continuity considerations, 
this implies an enhancement of downward motions in the upper fluid, i.e. strengthening 
of the initial disturbance. Thus, in the two-layer system there is a positive feedback 
which in favourable cases may lead to a spontaneous development of disturbances 
under the condition of stable stratification of both fluids. By convention, we arbitrarily 
call the disturbances developing in the above situation anticonvection of divergent type 
(a divergence of streamlines at the interface corresponds to positive values of 
temperature disturbances). 

In works by Perestenko & Ingel (1989, 1991) a more general situation is considered, 
when the presence of a surface heat source (sink) is assumed at the interface. It has been 
shown theoretically that for any pair of interacting fluids, depending on the value of 
the intensity Q of this source (sink), both the divergent and convergent types of 
anticonvection can be realized. In particular, at sufficiently large positive values of Q, 
when stratification in the lower fluid is sufficiently stable whereas in the upper one it 
is close to neutral, remaining stable, the convergent type of anticonvection is realized 
(see figure 1 b). Otherwise, when the heat sink is sufficiently intensive (see figure 1 a), the 
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conditions for the occurrence of anticonvection of the divergent type can always be 
created. 

In Welander (1964) and Gershuni & Zhukhovitsky (1980), the possibility of 
observing anticonvection under laboratory conditions is discussed. However, an 
attempt to demonstrate this type of instability in a mercury-water system (see 
Welander 1971) has been unsuccessful, and at the present time no successful 
experiments on anticonvection have come to our notice. As may be inferred from the 
Welander (1971) and G. P. Bogatyrev (1992, personal communication), the causes of 
failure of experimental studies of anticonvection is most likely the following. Since a 
certain amount of dissolved oxygen from the air is always present in the water, a stiff 
oxide film is formed at  the mercury surface which is in contact with the water. This film 
inhibits the dynamic interaction between the fluids necessary for instability. Another 
possible cause of failure is insufficient purity of water and mercury, giving admixtures 
which are also capable of forming films at the interface which hinder the transfer of 
tangential stresses from one fluid to another. More recently, some other theoretical 
works taking into account additional contributory factors from experimental 
observation on anticonvection in the fluid-fluid system have also been published. For 
instance, Nepomnyaschy & Simanovsky (1990) allowed for the effect of heat release at  
the interface on the occurrence of convection in a system heated from above and 
consisting of two fluids of finite depth. This work discussed the situation in which 
temperature gradients in both fluids may be opposite in direction as a result of heat 
release at the interface. This enabled an investigation of the interaction of Rayleigh- 
and Welander-type instabilities. The combined effect of Welander-type thermocapillary 
instabilities was investigated in a recent work by Perestenko (1992). He showed that 
taking into account a ' normal ' temperature dependence of the interfacial tension 
allows one to extend substantially the area of instability for anticonvection of the 
divergent type. Some results relative to anticonvection are also presented in Gershuni, 
Zhukhovitsky & Simanovsky (198 1) and Gershuni, Zhukhovitsky & Pershina (1983), 
the former work, in particular, containing numerical investigations of finite-amplitude 
motions in two-layer systems heated from above. 

Bearing in the mind possible geophysical applications and the above-mentioned 
difficulties of laboratory modelling of anticonvection in a liquid-liquid system, in the 
present work the stability of the interaction of laminar layers of water and moist air 
is investigated within the framework of the classical linear analysis in the absence of 
base flows and with stable density stratification in each layer. In earlier work we have 
already started investigating anticonvection, as applied to the problem of large-scale 
interaction of the ocean and atmosphere (Perestenko & Ingel 1989, 1991; Ingel & 
Perestenko 1992, 1994). In the present work, attention is focused, for the first time, on 
the study of the roles of the process of evaporation from the water surface and 
stratification with respect to the air moisture in the occurrence of anticonvection in a 
water-air system. 

The paper is organized as follows: 92 describes the setting up of a linear stability 
problem for a water-air system and formulates the boundary conditions for the 
background state and for disturbances. In 53 ,  the characteristic equation of the 
problem is written and some of its asymptotics are found. A regime is discovered in 
which neutral oscillations occur in the water-air system. Based on simple physical 
considerations, the mechanism of these oscillations is discussed, and an analytical 
expression for their frequency is derived. In the general case, a number of numerical 
solutions of the characteristic equation are presented as neutral curves determining the 
boundaries of instability areas. In 54, the growth rates and wavelengths of unstable 
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disturbances are investigated, and an analytical relation between them in the long-wave 
limit is found. In conclusion (95) the results obtained are summarized, and their 
applicability to field conditions and the possibility of experimental observations of 
moist anticonvection are discussed. 

2. Setting up the problem 
2.1. Mechanical equilibrium 

Let us consider a system which consists of two horizontally homogeneous stably 
stratified fluids, semi-infinite in the vertical direction, and in mechanical equilibrium 
(figure 2). We position the Cartesian axes in such a way that z = 0 corresponds to the 
interface, a positive axis to moist air, and a negative axis to water. Denoting the 
equilibrium distributions of density, temperature, specific humidity (mixing ratio) and 
pressure by p, T, q and p, respectively, and assuming that the air is unsaturated 
everywhere, except the interface, we obtain the equation for mechanical equilibrium in 
each of the fluids in the Boussinesq approximation: 

Here 6 = m,/m,- 1, ma and m, being the molar masses of dry air and water, 
respectively, ai is the thermal expansion coefficient, poi is the average value of density, 
e, is the unit vector along the z-axis, and V is the Hamiltonian operator. Hereafter we 
shall denote by subscripts 1 and 2 the parameters and variables relating to the upper 
and lower fluid, respectively. At the interface ( z  = 0), the following conditions should 
be met: 

The last condition in (2.6) implies the fulfilment of the condition of air saturation 
immediately above the water surface. From (2.2), (2.3) and conditions (2.6) it follows 
that 

_ _ _  
Pl = P2, q = T,  = T,, q =  qyT,). (2.6) 

r, = T,+yiz, (2.7) 

4 = + Y* z ,  (2.8) 
Here yi = a, 2 0 and yq  = a, q < 0 are the vertical gradients of temperature and 
specific humidity, indicating a linear increase of temperature with height in both fluids 
and a linear decrease of specific humidity with height in moist air (figure 2). In this 
paper we shall restrict our consideration to those situations where the density in both 
fluids does not increase (as a rule, it decreases) with height. In particular, for the upper 
fluid it implies the fulfilment of the following inequality : 

Now we supplement the conditions (2.6) with the heat balance equation describing the 
latent-sensible flux relation at the interface : 

P O ,  Cp, ~2 ~2 = P O ,  Cpl ~ 1 ~ 1  +pol DLv ~q + QR? (2.9) 
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FIGURE 2 .  A schematic of vertical profiles of the background temperature ( T )  and specific 
moisture (q) for the problem of moist anticonvection. 

where Cpi is the specific heat capacity at constant pressure, K~ and D are the coefficients 
of thermal conductivity and water vapour diffusion, respectively, L, is the latent heat 
of vaporization, and QR is the intensity of the surface heat source (sink) which in 
geophysical applications is determined by the radiation balance of the water-air 
interface. Next we set K~ = D because their values are close to each other. 

2.2. Boundary-value problem for disturbances 
Assuming that pi, K ,  q and P, are the disturbances to the equilibrium state of a two- 
layer system heated from above, we can write the linear equations for disturbances in 
the Boussinesq approximation for each of the fluids: 

2 V Pi 

Po, P O i  
(a , - v iV  ) v i  = - - 4 - g - e  2, 

( a , - K i V 2 )  i '+y iv i .e ,  = 0 ,  

(a,-K1V2)q+ypv1.e, = 0,  

V.Vi  = 0,  

PlIPO, = - (a1 r, + w = - "1 T,, 

P2IP0, = -012 T2. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Here vi is the three-dimensional vector of a disturbance velocity field, vi is the 
kinematic viscosity coefficient, and T, = + (&/a,) q is the virtual air temperature. We 
now state a set of boundary conditions. 

We assume that far from the interface (at IzI +a) all disturbances are damped out. 
In this case, it remains to determine the disturbance interfacial conditions. 
Deformations of the interface are neglected (Welander 1964; Ingel & Perestenko 1992). 
Furthermore, disturbances of horizontal components of the velocity and temperature 
fields are taken to be continuous at z = 0, whereas tangential stresses at the interface 
undergo a discontinuity caused by the presence of a thermocapillary effect. A further 
condition may be obtained if we write the thermal balance equation at the interface 
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(2.9) for disturbances of the latent and sensible heat fluxes, assuming that there are no 
disturbances of the intensity of the surface heat source (sink) QR. Thus, at z = 0 we can 
write 

(2.16) I w, = w, = 0, u, = u,, 

P o l V 1 a , U 1 - n T V h T 2 = P ~ 1 V 2 a , u , ,  q =  q r  T,, 

Po, c,, K1 a, T +POl K1 L, a, 4 = Po* c,* K2 a, T,, 
v, = v,(a,, ayl, 

where ui is the vector of horizontal components of the velocity field and K is the 
vertical component. The parameter nT = an/aT characterizes a ' normal ' temperature 
dependence of the surface tension coefficient (Gershuni & Zhukhovitsky 1972) : 

n = no-nT T,. (2.17) 

It should be noted that the set of boundary conditions (2.16) is incomplete, since it does 
not contain an expression for the disturbance of the saturation specific humidity q* at 
the interface. This quantity is uniquely determined by the water surface temperature. 
For small disturbances q* is proportional to the disturbance of the water surface 
temperature T,. From the standard relations of moist air thermohydrodynamics and 
the Clausius-Clapeyron equation in the Boussinesq approximation one can derive 
(Perestenko 1993): 

(2.18) 

where R, is the gas constant for water vapour. Thus, the set of equations (2.10E(2.15) 
and the set of boundary conditions (2.16) and (2.18) state the boundary-value problem 
for the equilibrium-state disturbances. 

3. Linear analysis of stability 
3.1. The equation and interfacial conditions for  the vertical velocity 

We seek a solution of the set of equations (2.10)-(2.15) in the form of normal 
disturbances : 

(oi, q , q y  T,,Pi)  = {v i ( z ) ,  @i(z),B(z), @,(z), e(z))exp[wt+i(k,x+k,y)l. (3.1) 

Here w = w,+iwi is the complex increment of disturbances; k, and k,  are the 
wavenumbers characterizing the periodicity of disturbances along the x- and y-  
directions, respectively; Vi(z), o ,(~),  q(z),  o ,(~),  and e ( ~ )  are the complex amplitudes 
of disturbances. It is evident that at 0, = 0 the system will be in the neutral state, which 
will determine its stability limits. Substituting (3.1) into (2.10)-(2.15) reduces this set of 
equations to a single ordinary linear homogeneous differential equation with respect to 
the amplitude of the vertical velocity Y(Q in each of the fluids: 

(3.2) {(d&-A~i)(d&-A~i)(d~c- 1)- Ri} K(Q = 0. 

Here, similarly to Welander (1964) and Ingel & Perestenko (1992), we introduce the 
following notation : 5 = kz  is the dimensionless vertical coordinate (k2  = k i  + k i  = 
(27c/L),); Ri = N:/(K~ vik4) is the analogue of the Rayleigh number in each fluid; 
A:,- 1 = hii = w/vi  k2 and Ati - 1 = Af, Pri are the dimensionless 'viscous' and 
'diffusion' time scales of the problem. Here N,2 = a1 yl( 1 - $ ) g  and N,2 = a2 y2g are the 
buoyancy frequencies squared in the upper and lower fluid, respectively, q~ = -6y,/ 
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aI y1 is the density ratio in the moist air (a dimensionless parameter determining the 
stratification in the upper fluid), and Pri = v ~ / K ~  is the Prandtl number in each of the 
fluids. It should be noted that the requirement on stability of the background density 
stratification (in the limiting case, of the neutral one) in the upper fluid determines the 
variation range of the dimensionless parameter q~ from zero (neutral stratification with 
respect to moisture) to unity (neutral density stratification), whereas for stratification 
in water it is necessary that y2 2 0. 

It can easily be shown that the set of boundary conditions (2.16), and (2.18) can be 
reduced to 

Wl = W2 = 0, 

d, W, = d, W,, 
(3.3) 

(3.4) 

= (d&-Af2) (d&- 1) d, W,. (3.7) 

Here, similarly to Welander (1964), we introduce the following dimensionless 
parameters : 

R, z, a, 4. Po, v1. v1 “2. Po, c p ,  K1 

’ 6pL; Po, v2 v2 “1 Po, c,, K2 %* 
=- €& lzL =- El = - , €2=-  7 €3 = 

Taking into account the thermocapillary effects at the interface in (3.5) leads to the 
appearance of an analogue of the thermal Marangoni number for water Mr = (gT y2)/ 
(p0, K~ v 2  k2).  Thus, the problem of stability, completely formulated mathematically, 
incorporates equation (3.2), the interfacial conditions at 6 = 0 (3.3)-(3.7) and the 
requirement K + 0 at 161 +a. 

3.2. Characteristic equation of the problem 
The solution of equation (3.2) can be written as 

6 

K(s> = C Cni ~ X P  (rni 0. 
n=1 

Here the rni are the roots of the equation 

(r: - Af i )  (r: - hii) (r: - 1) - Ri = 0. (3.9) 

Equation (3.9) has six roots rni with Re(rl,, rZi ,  r3J 2 0, whereas rqi = - r 1 2 ,  : r 52. . = - r 22 .. 7 

and rgi = - rQi. Consequently, to fulfil the condition of damping of all disturbances far 
from the interface in the expression for W,, only the exponents with roots - rll, - rZ1, 
and - rQ1 should remain, whereas in the expression for W, those with roots rI2, r22, and 
r32 should be left. For the remaining six arbitrary constants Cni(n = 1,2 ,3;  i = 1,2) we 
have from the interfacial conditions (3.3)-(3.7) six algebraic equations which enable us 
to write the following characteristic equation : 

(3.10) F(Ri7 M r 7  A 1 i 7  A2i7 €1, €25 €37 € q 7  €L2 = det(Ai,j) = O, 
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where A t , j  is a complex 6 x 6 matrix, the elements of which are presented in explicit 
form Perestenko (1993). It is easy to show that a limiting transition takes place from 
this stability problem to the Welander (1964) problem for two fluids when evaporation 
and thermocapillary effects are ignored. 

3.3. Some asymptotics 
In view of the cumbersomeness of the matrix in equation (3.10) and the presence 
of radicals rni which are the roots of the bicubic equation (3.9) with complex 
coefficients, the stability analysis of the system under consideration, in full and without 
resorting to numerical techniques, is fairly complicated. However, some asymptotics 
can be analysed quite easily. 

Thus in Welander (1964) and Perestenko & Ingel (1991) two asymptotic limits for 
‘dry’ anticonvection were analysed: a ‘long-wave’ limit ( k - t  0, R,, R2+m) and a 
‘short-wave’ one (k+m, R,,, Rz+O). In these works it was shown that in the short- 
wave limit, without considering thermocapillary effects, a two-layer system is always 
stable, whereas in the long-wave limit all modes grow with a wavelength greater than 
the critical one, provided that the instability criterion found is satisfied. It was also 
found that in the presence of sufficiently intensive surface heat sources (sinks) QR in 
two-layer fluids, it is possible that there exist two areas of instability for any pair of 
fluids for all cases. A divergent type of anticonvection (the ratio y l / y 2  is sufficiently 
great) corresponds to the case of an intensive heat source QR > 0, whereas a convergent 
type ( y l / y z  is sufficiently small) corresponds to the case of a heat sink QR < 0. 

Let us consider long-wave asymptotics, when we may neglect the horizontal 
exchange and thermocapillary effects, and use the hydrostatics approximation. The 
combined effect of Welander-type and ‘ thermocapillary ’ instabilities (with Sternling & 
Scriven 1959 being the first to study the latter) was investigated without considering 
evaporation in a recent paper by Perestenko (1992). The short-wave limit was also 
analytically investigated in that paper. 

First we assume that w, = wi = 0, which corresponds to mechanical equilibrium. 
Equation (3.10) at p =k 1 in the long-wave limit (k - t  0, R,, R2-tm) takes the form 

iz i3 i, - 4€, i3 q3(1 - 3€, E~ t y  + - 4 4  i t 1 3  - 3i3 q y  i - 2,4 = 0, (3.1 1) 
where 

Note that for the upper fluid we introduced two analogues of the Rayleigh number: 
a ‘density’ (R,) and a ‘thermal’ (Ra,) one. In equation (3.1 1) the external parameters 
of the problem are yl, y z  and 31, whereas the dimensionless parameter p is small and 
may be neglected everywhere, except for the limit Q) -t l/eL. Let us consider (3.1 1) as an 
algebraic equation with respect to e, = Ral /Rz  with a variable parameter p. Using the 
Cartesian theorem of the number of positive roots of a polynomial and finding their 
approximate values, we can draw inferences about the number of instability areas of 
the given system and the position of neutral curves. The dependence of the roots of 
equation (3.11) on the value of the external parameter p at T, = 293 K, which was 
found numerically, is plotted in figure 3. It is seen from this figure and an approximate 
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FIGURE 3. Neutral curves on the plane of parameters (Iog(RuJRJ,q) in the limit Ra:j3, R:l3 + 1. The 
solid line represents the stability boundaries for monotonic modes, and the dashed line for oscillating 
ones. The stable area is hatched. 

analysis of (3.1 1) that the entire variation range of the parameter 9 can be divided into 
three subranges. 

(i) 0 < p < l/eL. Here there are two roots: 

(3.13) 

(3.14) 

Their values determine the position in figure 3 of neutral curves AB and CD, 
respectively, which bound two instability areas in this subrange, where the situation 
coincides qualitatively with the results obtained by Perestenko & Ingel (1991) for ‘dry’ 
anticonvection. The areas I and I1 correspond to anticonvection of divergent and 
convergent types respectively. 

Further, with growing p (as Iygl increases at fixed yl), instability area I1 expands 
slightly, while area I shrinks drastically and in the limit q+ l / e L  (g3+0 and 
(Ra,/R,), +a) vanishes. In other words, an increase of stratification with respect 
to moisture and of evaporation leads to suppression of anticonvection of the divergent 
type. Let us explain this in greater detail. The air volume shifting downwards to the 
interface turns out to be warmer and drier than its surroundings. In this case, the water 
volume in contact with it is simultaneously heated due to contact heat exchange 
and cooled because of enhanced evaporation. To maintain a positive feedback, it is 
necessary for this cooling to be weaker than the heating, i.e. the Bowen ratio for the 
disturbances, which is determined as the ratio of disturbed fluxes of sensible and latent 
heat, should satisfy the following inequality: 

< - 1 .  a, @I Bo, = 
LtJ a, 4 
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It can be shown that this ratio in the long-wave limit practically coincides with the 
Bowen ratio for base fluxes 

(3.15) 

Thus, in the limit rp+ l/e, (Bop, Bof + - 1) the above-mentioned heating and cooling 
effects compensate each other, with the result that the temperature of the water volume 
under the interface remains virtually constant. This leads to suppression of the positive 
feedback necessary for the occurrence of anticonvection of the divergent type and to 
stabilization of the system. 

(ii) l/e, < rp < (e3+f)/(e3 eL+$) .  In this subrange, only one root (RaJR,), remains, 
which bounds the instability area of the convergent type 11. 

(iii) (e3 +f)/(e, e, + f )  < rp < 1. At rp x (e, + f ) / (e ,  e, + f), in addition to the root 
(RaJR,),, one more root of equation (3.11) appears (point E in figure 3). It can be 
written approximately as 

(RaJR,), x ( -4t2/3i3)y1 -v)-'. (3.16~) 
The appearance of this root implies that there is a new instability area (area I11 in figure 
3) in the subrange under consideration, which owes its origin entirely to the enhanced 
role of evaporation in the system under study with increasing v. The position of branch 
EF of the neutral curve bounding area I11 from above is given by 

(Ra,/R,), X (3/Q2(1 -rp)-l, (3.16 b) 
whereas the position of branch ED of the neutral curve bounding area I11 from below 
until it merges with area I1 at point D is approximately given by (3.16~). A physical 
mechanism for the instability arising in the area I11 is as follows. Ascending motions 
over the water surface in moist air lead to a decrease of the total vertical gradients of 
temperature and moisture, and consequently to a reduction of the absolute values of 
latent and sensible heat fluxes at the interface. In the vicinity of point E in figure 3 
x 0.75, Bop and Bof x -0.1. This implies that the predominant effect of ascending 

motions in the air is a substantial reduction of evaporation from the water surface and 
the occurrence of a positive disturbance of temperature at the interface. This thermal 
disturbance leads to enhancement of the initial ascending motions in the air and to 
further development of instability. 

Thus, in the system under consideration there is a previously unknown instability 
area I11 which owes its origin entirely to the above-mentioned positive convection- 
evaporation feedback and is possible only at sufficiently small values of Bop and 
Bof. It should be noted here that the flow arising in the lower fluid plays a stabilizing 
role in the case under study, tending to impose descending motions on the upper fluid. 
This enables one to assume that such a mechanism of stability loss can be realized more 
effectively above a well-moistened solid surface (Perestenko & Ingel 1993). In 
conclusion, it should be emphasized that in the limit p)+ 1 the system turns out to be 
unstable to monotonic disturbances at any stable thermal stratifications of both fluids. 

3.4. Anticonvective oscillations 
Along with instability of the monotonic type, the analysis of the water-air system 
under consideration also revealed an oscillatory regime of stability loss (corresponding 
to wi + 0). Its boundary in the long-wave limit is plotted in figure 3 as the curve GH 
calculated numerically from equation (3.10). The simplest way to analyse the 
occurrence of oscillations in the system and understand their mechanism is to consider 
the case where stratification of the lower fluid is rather weak, whereas the upper one 
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is stratified sufficiently stably. These conditions imply the fulfilment of the following 
inequalities : 

l&l, I&l 4 R:/3,  Ihfzl, lhizl 9 Rk'3, R J R ,  +a. 
In this case we are able to expand analytically a determinant in (3.10) and reduce it 

to two algebraic equations in p? and wi by setting the real and imaginary parts equal to 
zero. The roots of these equations determine the position of the stability boundary and 
the neutral oscillation frequency w i .  Thus, taking into account (3.17 a-c), we can obtain 
from (3.10) the following expression for the stability boundary : 

(3.17 a-C) 

where 
3e1 6, Pr.?f 

1 + 4e1(2 Priiz( 1 + Prii2)/(3e1 6,))lI4 ' 
b =  

(3.18) 

Expression (3.18) determines the minimum allowable value of p? in the given system at 
which neutral oscillations are possible. It is easily seen from figure 3 that the neutral 
curve G H  approaches the value vmin at (RaJR,) - lo6. Similarly, we can obtain from 
(3.10) and (3.17 a-c) the following expression for wi : 

(h&,/R:'3) M ( 2 d 2  el t3/(z3 + 3s1 i, Pr, 112 )) 2 , (3.19) 
which may be approximated, in view of (3.18), by 

(3.20) 

Notice that the necessary condition for the existence of neutral oscillations Bof > - 1 
(or p? > l/eL) follows immediately from (3.20), whereas the sufficient condition is given 
by (3.18). 

It can be shown that an expression of the type (3.20) can be easily obtained solely 
from simple physical considerations explaining the nature of the anticonvective 
oscillations revealed here. 

Let us assume that the temperature disturbance variations at the interface follow the 

O1(C; = 0) = 0,(g = 0) = 0, sin (kx) sin (wi t),  (3.21) law 

where, for definiteness, 0, > 0. Then the depth to which the thermal disturbance 
penetrates into the lower fluid is H ,  - HK2, where HK, = ( K , / w ~ ) ~ / '  is the vertical 
'diffusive' scale in this fluid. This follows immediately from (3.17b) if we rewrite it as 

H R 2  ' H K 2 ,  H Y 2 )  (3.22) 
where HU2 = ( Y , / W ~ ) ~ / ~  and HR, = (v, K , / N , ~  k2)lI6 are vertical 'diffusive' and 'density' 
scales. Next, assuming that H ,  < k-l (a long-wave approximation), we may neglect the 
horizontal exchange and use the hydrostatics approximation. Then it is easy to 
estimate the horizontal pressure gradients originating in a layer of thickness H, : 

H ,  0 0 ,  (3.23) 
Hereafter, for brevity, we omit factors of the type sin (kx)  sin (wi t). 

The horizontal pressure gradients cause the corresponding flows in the lower fluid. 
Thus, in the area where 0, > 0, there is a spreading under the interface, and ascending 
motions occur. Here we can estimate the characteristic horizontal velocity from the 
balance of forces of baric gradient and viscosity in the horizontal motion equation. We 

lP,l - g IPZI H2 = gpo, 1% P,/P,,I - g", H ,  0 0  k .  

obtain 

(3.24) 
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Because of the continuity of tangential stresses at the interface, the lower fluid sets 
the upper one in motion. Therefore in the lower air layer of thickness H,,  there are also 
horizontal flows with the characteristic absolute value of velocity I V,l N I UJ. The depth 
of this layer is determined by density stratification, which is evident from the condition 
(3.17~) written as 

HR1 ' H K , 7  H V 1 7  (3.25) 

where HKl,  Hvl and HR, are the diffusive, viscous and density scales in the upper fluid, 
respectively. Consequently, it should be assumed that H ,  N HR,, from whence and the 
continuity equation we obtain the characteristic absolute value of vertical velocity in 
the upper fluid: 

(3.26) 

It is easy to see that in this case, over the more heated area of the water surface in the 
upper fluid descending flows occur together with spreading above the interface, which 
are imposed by motions in the lower fluid. The descending motions carry dryer and 
warmer air from above to the water surface. We can assess these disturbances in 
moisture and temperature by approximately equating the terms W, yg and K~ a:, q,  
W, y1 and K, a:, O,, respectively, in the transfer equations (2.11) and (2.12). Whence 
it follows that 

(3.27~) 

(3.27 b) 

Drying the air over the water surface leads to enhanced evaporation and therefore a 
disturbance of the latent heat flux, 

P O ,  ~1 L, la, 41 N PO, L, ga,  Iyql Hz H,2 0 0  k2/Wi. (3.28~) 

Simultaneously, the sensible heat flux in the air directed toward the water is disturbed 
as well, 

Po, CP1 KlI% 0 1 1  - Po, c,, ga2 Y1 H2 K 0 0  k2/% (3.28 b) 

The absolute value of the heat flux disturbance in the lower fluid can be written as 

Po, cp, K2 1% 0 2 1  - Po, c,, Kz A@,lH23 (3.28~) 

where A@, is the absolute value of the characteristic vertical decrease of the 
temperature disturbance in the water layer of thickness H,. If the ratio pol K~ L, la, 411 
pol Cp, K~ la, @,I = II/Bo,l > 1, a water layer of thickness about H2 will be cooled. This 
cooling will continue until the water surface cools down to about 0,. In turn, this will 
lead to the occurrence of a descending motion and a horizontal convergence of flows 
in the water, and a process similar to the one above will develop, but of opposite sign for 
all disturbances (the second half-period of oscillation). The values of A e 2  and 0, are 
of the same order of magnitude. In fact, as cooling of the surface due to evaporation 
dominates over its heating owing to contact heat exchange (IBof( < l), and the 
temperature disturbance at = 0 becomes negative, a positive deviation of temperature 
of approximately 0, still persists at a depth of about H,. This is easily seen from a 
direct analysis of the vertical temperature profiles (Perestenko 1993) as well. Taking 
into account the fact that the fluxes of latent and sensible heat are oppositely directed 
(Bo, < 0), we substitute the expressions for the fluxes (3.28~-c) into the heat balance 
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FIGURE 4. A set of neutral curves on the plane (log (RaJR,), log L)  at gT = 0.144 x N m-l K-' 
and rp = 0 (curves 1 and 2) and rp = 1.0 (curve 3). Solid lines represent portions of the stability 
boundaries for monotonic modes, and dashed lines for oscillating ones. 

equation from (2.16). Assuming that 80, - 0, and substituting the appropriate 
expressions for H ,  and H,, we obtain an expression for the oscillation frequency of the 
system which is similar to (3.20): 

(3.29) 

The above considerations contain a number of simplifications but can be 
substantiated more fully and tested a posteriori. 

From the analysis of the disturbance profiles in both fluids (Perestenko 1993) it may 
be concluded that thermal disturbances at the interface determine the dynamics in the 
lower fluid which in turn imposes a corresponding circulation on the upper fluid. 
Further, vertical motions in the upper fluid control the fluxes of latent and sensible heat 
at the water-air interface and so determine the thermal disturbances at the interface. 
This corresponds to the scheme of fluid interaction considered above. 

The fact that from simple physical considerations one can reproduce the expression 
for the neutral oscillation frequency supports the correctness of our understanding of 
the mechanism of anticonvective oscillations. 

3.5. Results of numerical calculations of neutral curves 

In this section we consider the numerical solutions of equation (3.10) without any 
restrictions on the wavelengths of the modes under study. Figure 4 shows the neutral 
curves for the monotonic and oscillatory types of instability plotted in the plane of the 
parameters of the problem (log (RaJR,), log (L)) at various values of cp. These curves 
determine the position of the stability boundaries of the system. From the foregoing 
asymptotic analysis (see figure 3) it follows that at rp = 0 (dry anticonvection) there are 
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L (m> 
FIGURE 5. Dispersion curves for neutral oscillating modes on the plane (logw,, logL) at 
gT = 0.144 x N m-' K-' and log(Ra,/R,)+co (curve 1); log(Ra,/R,) = 4 (curve 2 ) ;  and 
log (RaJR,) = 2 (curve 3). 

two instability areas, located above curve 1 and below curve 2, respectively. In the limit 
of large L (Rat13, R:l3 9 1) curves 1 and 2 approach the values of the ratio (RaJR,) 
following from expressions (3.13) and (3.14), respectively. Convergent instability (its 
area is bounded by curve 2) on the interval of small L is suppressed by thermocapillary 
effects. In the limit log (RaJR,) + - cc curve 2 asymptotically approaches the vertical 
line that corresponds to the value of L following from an approximate equality of the 
form : 

Mr R:l3 el 
R, 26, 

5z -. (3.30) 

It should be noted that the asymptotics (3.30) is true in this limit for all neutral curves 
for which 0 < p, < 1.0. In the opposite limit log(Ra,/R,)+co curve 1 is given by 
R:'3 5z 16/e3. In the limiting case p, = 1.0 a unified instability area is located to the right 
of the neutral curve 3 consisting of two portions. The first is the stability boundary 
for monotonic disturbances (solid line) and occurs at log(Ra,/R,) < 1.5, whereas the 
second separates the damped oscillations from the growing ones (dashed line) and 
appears at log (Ra,/R,) 3 1.5. In the limit log (RaJR,) + - cc curve 3 approaches the 
vertical line that corresponds to the value of L following from the approximate equality 

(3.31) 

From the position of the neutral curve 3 it appears that as the ratio (RaJR,) decreases, 
the instability area on the interval of small L is reduced under the influence of 
thermocapillary effects. The dispersion curves calculated numerically from equation 
(3.10) and fitting the positions of the stability boundaries at different values of the 
ratio (RaJR,) are plotted in figure 5 on the plane of parameters (log wi ,  log L). In the 
limit of large L each of these curves develops a dependence of the form wi - L-'I3 or 
wi - k2I3, obtained previously analytically in the expressions (3.20) and (3.29). 
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4. Growth rates of disturbances 
As well as the stability boundaries of the system, we investigated growth rates of 

disturbances. In terms of the prospects for experimental studies on this instability and 
its investigation in field conditions, of particular interest is the study of growth rates 
in those situations most favourable for its development. This applies to the case where 
the lower fluid is neutrally stratified (R, = 0), and in the upper fluid a stable 
temperature gradient is compensated for by an unstable humidity gradient, so that the 
density stratification is neutral (y+ 1, R, +O). Then some of the negative feedback in 
the system is absent, since instability energy is not expended as work against buoyancy 
forces in each of the fluids. Besides, in this case question (3.10) is simplified, and its 
analysis enables one to find the long-wave asymptotics (Ra:l3, hoi % 1 ; i = 1,2) for the 
increment : 

The two-thirds power law or - L-'l3 at L 2 1 m is clearly seen in figure 6 which 
presents a numerical solution of equation (3.10) with and without consideration of 
thermocapillary effects. Next, as in 53.4, let us show that an expression for w, similar 
to (4.1) can be readily obtained from simple physical considerations. 

We assume that at the interface the temperature inhomogeneity which is periodic in 
the horizontal direction and exponentially growing with time is given by 

0,(5 = 0) = 0,(5 = 0) = O0cos (kx)  exp (w, t ) ,  (4.2) 

where the amplitude 0, > 0. Let us denote the height to which the temperature 
disturbance penetrates into the upper fluid by H,. Assuming that H I  4 k-l, we use the 
hydrostatics approximation and neglect the horizontal exchange. Then it is easy to 
evaluate the pressure disturbance : 

(4.3) 

(for brevity, we omit factors of the type cos (kx)  exp (w, t)). Next, we assume that in the 
linearized equation of horizontal motion the terms a, U, and a, Pl/po, are of the same 
order of magnitude. Hence, taking into account (4.3), the characteristic value of the 
horizontal velocity in the upper fluid can be written as 

Pll "g lPll Hl = gpo, a1 HI 0,; 1% pI/Po,l - gal HI @ok 

I U,l - gal Hi @ok/wr .  (4.4) 

Further, from continuity considerations, 

gal 0, H," k2 

O r  
IKl - HlkIU,I - (4.5) 

Vertical motions lead to disturbances in the humidity field. The amplitude of these 
disturbances can be evaluated from the equation 

a,q--K1a:zq = -Yq% (4.6) 

It is easy to verify that both terms on the left-hand side of (4.6) are of the same order 
of magnitude, therefore either of them may be equated in order of magnitude to the 
right-hand side. Hence 

(4.7) 141 - Iyq %l/wr - gal IYqI ff? @ o k 2 / 4 .  
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FIGURE 6. Increments of growing modes on the plane (logw,, logL) in the case log(Ra,/R,)+co at 
rp = 1.0 and crT = 0.144 x N m-' K-' (curves 1, 2 and 3); and gT = 0 (curves 4, 5 and 6). The 
dashed lines 1 and 4 represent the real parts of the pairs of complex increments. 

Since there are descending motions over the colder portions of the interface, they carry 
drier air from above. In its turn, this leads to an enhanced evaporation in this portion, 
i.e. to an additional flux of latent heat 

The relations between densities, specific heat capacities and exchange coefficients in 
two fluids are such that, as is easy to verify, evaporation is mainly accounted for by 
cooling of the lower fluid. Thus, (4.8) should be approximately equated to the absolute 
value of heat flux from the lower fluid, 

where H ,  is the effective depth of a layer of the lower fluid cooled upon additional 
evaporation, and A@, is the characteristic absolute value of this cooling. The meaning 
of latter value is the same as that of the temperature disturbance amplitude 0, 
introduced above. By equating 1A@,1 and I@,\ in order of magnitude, with allowance 
made for an approximate equality of the fluxes (4.8) and (4.9) as well as for the fact that 
Hl, = ( K ~ ,  2/w,)112, we obtain 

(4.10) 

In deriving (4. lo), we made a number of simplifying assumptions, and therefore good 
agreement of (4.10) with (4.1) derived from (3.10) may appear surprising. However, the 
above-mentioned simplifications can be substantiated sufficiently strictly. 

Plotted in figure 6 in the plane of parameters (logw,, IogL) are the curves of the 
increments of growing modes at 9, = 1.0 and (Ral/R2)+c0, which were calculated 
numerically from equation (3.10). It is seen from this figure that unstable disturbances 
of the oscillating type (curves 1,4) occupy only a rather narrow interval of wavelengths 
out of the entire range of growing modes. At larger wavelengths, pairs of monotonically 
growing disturbances remain, which have different w, at the same L and therefore 
different vertical structures. Here it should be noted that in figure 6 just the monotonic 
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disturbances have the maximum increments, and in the long-wave limit the two-thirds 
power law (0, - L Y 3 )  obtained earlier for a number of anticonvection problems 
without considering moisture (Ingel & Perestenko 1992) is realized well. There are 
similar patterns for increments at different values of p, and (RaJR,), in those situations 
where oscillatory instability occurs. It may be suggested that a dependence of the form 
w, - L-2/3 is common to the instability under consideration. 

5 .  Conclusions 

The main results of the present paper can be formulated as follows. 
(i) Within the framework of the linear analysis of stability we investigated the role 

of moisture in the occurrence of anticonvection in the vicinity of the interface of a 
water-air system. The key physical parameters of the problem, such as the ratio of the 
Rayleigh number analogues (RaJR,) and the density ratio in the moist air p, which 
determine the position of the stability boundaries of the system in the limit Rali3, 
Rii3 $- 1, were defined. 

(ii) A feedback between convective motions in the air and the rate of evaporation 
from the water surface was found and analysed in detail for the first time. This 
feedback is enhanced with increasing p, even for stable density stratification of both 
fluids. The essence of this feedback lies in the fact that a horizontally inhomogeneous 
thermal disturbance at the interface initiates convective motions in the air and water. 
Next, the vertical motions arising in the air disturb the vertical moisture profile and 
hence the magnitude of the latent heat flux from the water surface, thus determining 
the change of the initial thermal disturbance at the interface. As the magnitude of p, 
increases, this feedback leads to the disappearance of one of the instability areas for dry 
anticonvection discovered previously by Gershuni & Zhukhovitsky (1980), Perestenko 
& Ingel (1989, 1991). It also leads to the appearance of new instability areas, not only 
of the monotonic type but also of the oscillating type resulting solely from the influence 
of moisture. 

(iii) Using simple physical considerations (see $93 and 4), we explained a mechanism 
for the anticonvection development in the monotonic and oscillating regimes, and 
reproduced the most important asymptotics relating to the stability boundaries and 
disturbance growth rates. We analysed a physical mechanism for neutral anticonvective 
oscillations caused by the influence of moisture in the system under study (see $3.4). 
Such oscillations were shown to exist only at p, $- vmin. For ymin and the oscillation 
frequency wi we obtained analytically the asymptotic expressions (3.18) and (3.20). 

(iv) In $4 we obtained the dependence of the growth rates of unstable disturbances 
on their wavelengths. The results support the analytical asymptotics which in turn can 
be illustrated in the simplest cases by descriptive physical considerations (see, for 
example, (4.1) and (4.10)). The analysis of dispersion curves (see figure 6 )  shows that 
although long-wave disturbances have a lower excitation threshold, disturbances in the 
short-wave range of unstable modes grow most rapidly. Note that oscillating 
disturbances occupy only a narrow portion of the entire interval of growing modes, 
with modes of the monotonic type possessing the highest growth rates. 

5.2. Applications 
In discussing, briefly, the applicability of this model and the results obtained to field 
conditions, it should be emphasized first and foremost, that the formation of the 
background state tested for stability occurs, as a rule, on the exposure of a cooled water 

5.1. Summary 
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FIGURE 7. A sketch of an experimental installation to be used for observations of moist 
anticonvection: (a)  the layer of moist air; (b)  the layer of tinted water; (c) the upper cover, where 
temperature and moisture are regulated, as well as the location of the source of electromagnetic 
radiation (a lamp) which enables one to regulate radiation heating of the water surface; ( d )  the lower 
plate (the bottom), where temperature is regulated ; (e) a schematic representation of the expected 
convective cells. 

body surface to incoming dry and warm air. This pattern is widespread in coastal 
regions in the warm season. Also, it is important to note that coastal waters contain 
a large number of suspended particles, which leads to intensive absorption of short- 
wave solar radiation in a thin near-surface layer of the water body and the formation 
of a temperature profile decreasing with depth (the ‘warm film’ case). If calm 
conditions are retained for several hours, then temperature and moisture profiles are 
formed in the interacting laminar layers which are similar to those presented in figure 
2, and the conditions occur for realization of an instability of the type considered. 

When discussing the applicability of the proposed model to field conditions, we 
should note that in the present paper the background source of heat QR was considered 
as a free external parameter of the problem. However, in the real ocean-atmosphere 
system, the radiation balance at the water-air interface determining this source is 
limited both above and below. Thus, in accordance with the data presented, for 
example, in the monograph by Matveev (1984), in the warm season the value of QR can 
vary during 24 h from - 70 W mP2 (at night) to 300 W m-2 (by day). It is easy to verify 
that at different actual values of y1 and y2 and the above-mentioned range of variation 
of QR, any of the instability regimes investigated in the present paper can be realized 
in field conditions. 

5.3. Possible laboratory tests 
Being aware of an urgent need to confirm experimentally the phenomenon of 
anticonvection, we consider now the possibility of observing the investigated instability 
under laboratory conditions. We believe that this can be done using a specially 
equipped tank of sufficiently large horizontal dimensions with an upper cover 
permeable to water vapour (figure 7). When carrying out the experiment, one should 
regulate both the temperature at the bottom of the tank, and the temperature and 
moisture of the air at the upper cover. In addition, a source of electromagnetic 
radiation should be positioned under the upper cover, which will make it possible to 
regulate horizontally homogeneous radiation heating of the water-air interface. This 
radiation should be absorbed in a thin near-surface water layer, for which purpose the 



Moist 'anticonvection' in a water-air system 19 

water should be tinted with an appropriate admixture. The horizontal dimensions of 
the tank should be sufficiently large so that the most unstable disturbances will fit in 
it. By way of example let us consider the possibility of laboratory modelling of 
anticonvection in the case investigated theoretically in 94. Let the temperature at the 
bottom of the tank be about 30 "C and the water layer depth about 0.1 m. 
Stratification in the water is regulated through radiation heating of the water surface, 
so that it will be close to neutral. Then the water surface temperature T, also will be 
close to about 30 "C, and the corresponding mixing ratio of saturated air 4" will be 
about 3 x lo-'. Let us assume that the moist air layer depth is about 1 m, and the 
temperature at the upper cover T, is maintained at about 36 "C, the mixing ratio here 
being much smaller than that at the water surface. This gives, a, q - 3 x lo-' m-', a, T,  - 
6 K m-', cp z 1 .  By regulating the temperature and moisture at the upper cover, 
one can make the value of sufficiently close to unity, i.e. neutral density stratification 
of the air will be attained. It is evident from the estimated values of heat and moisture 
fluxes at the water surface that at cp - 1 the inflow of sensible heat from above amounts 
(in absolute value) to about of the heat outflow at the water surface resulting from 
evaporation. In the case under consideration, the value of this outflow is about 
1.5 wt m-', and therefore the compensating radiation source of heat at the water-air 
interface which provides stratification close to neutral in the water layer should be, 
correspondingly, the same. It follows from the linear analysis of stability performed in 
94 that in this case the wavelength of the most rapidly growing mode L - 0.5 m, 
whereas disturbances penetrate into the water to the depth H ,  - 5 x lo-' m and into 
the air to the height Hl - 0.1-0.15 m. The respective linear dimensions of the tank 
should be correspondingly several times larger. In this case the e-folding time is about 
10's. The circulation cells that occur can be observed using the conventional 
techniques employed for studying Rayleigh-BCnard convection. 

Appendix. Numerical values of parameters of the fluids 

relating to the conditions 
In our calculations we used the following values of the water and air parameters 

= 293 K an = 1.01 x lo5 Pa: 
i 1 2 

P O i ( k  m-3) 1.18 998.23 
Cpi (J kg-I K-') 990.7 4.18 x 103 
Ki(mz s-l) 2.1 x 10-5 1.43 x 10-7 
v,(mz s-l) 1.5 x 10-5 1.01 x 
C$(K-') 3.4 x 10-3 2.06 x 10-4 
Pri 0.71 7.04 

cT = 1.44 x lop4 N m-' K-'; S = 0.608; L, = 2.46 x lo6 J kg-'; 4" (Z) = 1.45 x 
lo-' (kg kg-'); R, = 461.5 J kg-' K. This gives the following values of the dimension- 
less parameters : 

el = 1.76 x lO-';e, = 0.90; e3 = 3.7 x lo-,; eg = 6.28; eL = 13.9. 
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